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Abstract. We consider a class of evolution equations on the Lie groupGL(n,R) or any of its
closed subgroups, built by means of an arbitrary anti-automorphism of the associative algebra of
all realn-dimensional matricesMn×n. The set of first integrals and a method of construction for
a Hamiltonian subclass is shown. This subclass has a connection with the factorization problem.
A certain application of a matrix evolution equation built by means of transposition, related to the
existence of(2, 0)- and(0, 2)-type tensor invariants in the theory of dynamical systems, is found.

1. Introduction

This year, three decades have passed since the celebrated paper by Lax [9] was published.
Lax’s idea was to replace evolution equations of a system in question by other ones defined in
a different state space and possessing certain useful properties. The original evolution equations
of the system are described on a certain manifoldP (state space) with finite dimensionm, by

ẋ = F(x) (1.1)

wherex = (x1, . . . , xm) ∈ P andF(x) denotes a vector field onP. In Lax’s approach
information about the dynamics of this system are obtained from the analysis of the operator-
type evolution equation on a setM of n-dimensional matrices:

L̇ = [L,M] L(t0) = L0 (1.2)

where [·, ·] denotes the commutator. MatricesL,M depend, by assumption, on the dynamical
variablesx1, . . . , xm in such a way that the matrix equation (1.2) is equivalent to the system
(1.1). It means that differential equations for quantitiesx1, . . . , xm obtained from (1.2) have
the same form as in the system (1.1). If we succeed in finding a passage from (1.1) to (1.2) we
call (1.2) the Lax representation of equation (1.1). So far, the Lax representation have been
found for a large number of systems with finitely or infinitely many degrees of freedom.

The existence of such representations is important for several reasons:

(1) a set of first integrals for the representation (1.2) is known,

(2) the setM often has a nice structure of a Lie algebra or of a Lie group of matrices
and equation (1.2) is of Hamiltonian type. In addition, in many cases first integrals are
pairwise in involution. This fact greatly simplifies the proof of the integrability of (1.2)
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and in consequence the proof of the integrability of the system (1.1). The famous Adler–
Kostant–Symes (AKS) theorem [1,8,15] allows us to systematically construct Hamiltonian
systems and a hierarchy of commuting first integrals. The deeper meaning of the AKS
theorem was explained in terms of classicalR matrices by Semenov-Tian-Shansky and
Reyman [11,12].

A natural question arises: how does one find a Lax representation for a given evolution
equation? We are only able to construct the Lax representation in a systematic manner for
a system, for which we know a(1, 1)-type tensor field with the following property: the Lie
derivative of this tensor field along integral curves of the system vanishes [5, 6]. This fact is
useful because there exists a few ways of constructing such tensor fields. This is, for instance,
the case in bi-Hamiltonian systems [2] with one nonsingular two-form.

We now address the question: are there any other (more general) operator equations with
properties analogous to the Lax equation, from which we can obtain information about the
dynamics of (1.1)? In particular: are there equations associated with the vanishing of the Lie
derivative of(0, 2)- or (2, 0)-type tensor fields along integral curves of considered systems?

One such class of generalizations of the Lax equation on an arbitrary associative algebra
is due to Bogoyavlensky [3]. He investigated the equation

L̇ = Lτ(M)−ML L(t0) = L0 (1.3)

whereτ(·) denotes any automorphism of the associative algebra. The Bogoyavlensky equation
has many interesting properties, in particular, the set of first integrals [3] and the construction
of the Hamiltonian subclass of equations of the form (1.3) [13] are known. But obtaining a
representation of this type is a pure art and consists of finding a suitable change of variables.

In this paper, we will analyse another type of generalized Lax equation on a setG with
the structure of the Lie groupGL(n,R) or any of its closed subgroups, namely:

L̇ = −(Lκ(M) +ML) L(t0) = L0 ∈ G (1.4)

whereM = M(t, L) is Lipschitz continuous andM belongs to the Lie algebrag associated
with the Lie groupG, andκ(·) is an arbitrary anti-automorphism of the associative algebra of
all realn-dimensional matricesMn×n. In addition, we assume that for everyM ∈ g, κ(M) ∈ g.

The analysis of this type of matrix differential equation can be useful because there exist
dynamical systems for which the representation (1.4) is easier to find than the representation
with an automorphism (1.3). In addition, even if both representations exist for a certain
dynamical system, it happens that the representation of the form (1.4) gives more information
about the dynamics than (1.3). In the last section, we illustrate these statements with examples
of (1.3) and (1.4) of the following form:

L̇ = LM −ML L(t0) = L0, (1.5)

L̇ = −LMT −ML L(t0) = L0 (1.6)

whereT denotes the transposition of matrices.
The organization of this paper is as follows. We begin the next section with introductory

definitions and with an analysis of the general properties of equation (1.4). In section 3, the
construction of a Hamiltonian class for equation (1.4) and a connection with the factorization
problem is presented. In the final section, we analyse the transposition as a special case of an
anti-automorphism transformation. Equation (1.4) withκ(M) = MT , whereT denotes the
transposition of matrices, has a close connection with(0, 2)- and(2, 0)-type tensor invariants.
In addition, in the last section we present dynamical systems representable in the form (1.6)
and we comment on certain relations between representations of the type (1.5) and (1.6).
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2. Basic notions and general properties of equations with an anti-automorphism

Let us recall that an anti-automorphism (of the second order)κ of the associative algebra of
all n-dimensional real matricesMn×n is a mapκ : Mn×n→Mn×n which fulfils the following
conditions:

∀X1, X2 ∈Mn×n κ(X1 +X2) = κ(X1) + κ(X2)

∀X1, X2 ∈Mn×n κ(X1 ·X2) = κ(X2) · κ(X1)

∀X ∈Mn×n κ2(X) = X.
(2.1)

The second condition means that for an arbitrary nonsingular elementX ∈Mn×n

κ(X−1) = κ−1(X). (2.2)

In addition, we assume

∀M ∈ g κ(M) ∈ g. (2.3)

We have assumed, that the evolutiont → L(t) described by

L̇ = −(Lκ(M) +ML) L(t0) = L0 (2.4)

whereκ(·) is an arbitrary anti-automorphism ofMn×n fulfilling (2.3), is defined in the setG
of nonsingularn × n real matrices. This limitation is important otherwise the existence of
first integrals of (2.4) would not be guaranteed. We do not impose this assumption on the
n-dimensional matrixM. In general, explicit time dependence and the dependence ofM on
L is allowed.

The important properties of equation (2.4) are formulated in the following theorems.

Theorem 1. If the evolution is described by (2.4), then eigenvalues of the matrixLκ−1(L) are
first integrals, or equivalently

Ck = Tr{Lκ−1(L)}k k = 1, 2, . . . (2.5)

are first integrals of (2.4).

Proof. Using (2.4) we have

d

dt
{Lκ−1(L)} = [Lκ−1(L),M]. (2.6)

The above equation has the Lax form and this observation completes the proof. �
We see that first integrals given by (2.5) only exist if the evolution of the matrixL(t) takes

place in the setG of nonsingular matrices.

Theorem 2. Assume that for the evolution equation (1.1) we have found two representations
of the form (2.4):

L̇1 = −(L1κ(M1) +M1L1) L̇2 = −(L2κ(M2) +M2L2) (2.7)

whereL1,M1 andL2,M2 are n1- and n2-dimensional matrices, respectively, and an anti-
automorphism fulfils the condition

∀X1, X2 ∈Mn×n κ(X1⊗X2) = κ(X1)⊗ κ(X2) (2.8)

where⊗ denotes the Kronecker product of matrices [14]. We can then construct the new
representation of the same form in the following manner:

L3 = L1⊗ L2 M3 = M1⊗ 1In2 + 1In1 ⊗M2 (2.9)

where1In1 and1In2 denoten1- andn2-dimensional unity matrices, respectively.
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Proof. We calculateL̇3 using (2.7) and−L3κ(M3) −M3L3 by means of (2.9) and the basic
relation of the Kronecker product [14]:

(A⊗ B)(C ⊗D) = (AC)⊗ (BD). (2.10)

�
We can also generate integrals of motionIij from this new representation:

Iij = Tr{[L1κ
−1(L1)]

i ⊗ [L2κ
−1(L2)]

j } = Tr{[L1κ
−1(L1)]

i}Tr{[L2κ
−1(L2)]

j } (2.11)

where we used the relation [14]:

Tr(A⊗ B) = Tr(A)Tr(B). (2.12)

This method of generating a new representation is also valid in the case whenL1 = L2. This
means that one representation of the form(2.4) is sufficient to generate an infinite sequence of
new representations. The described construction is analogous to the construction for the Lax
representation [10]. In [10], matricesL3,M3 have the following forms:

L3 = α1(L1⊗ L2) + α2(1In1 ⊗ L2 +L1⊗ 1In2) M3 = M1⊗ 1In2 + 1In1 ⊗M2 (2.13)

whereα1, α2 are arbitrary real parameters. We see that the difference between the construction
for the Lax representation and for the one described above consists of the absence of the second
term in the expression forL3. The existence of the second term is probably only characteristic
for the Lax representation.

The subsequent properties are associated with the presence of a Lie group and Lie algebra
structures. We assumed that the state spaceG is the Lie groupGL(n,R) or any of its closed
subgroups. MatricesM are the elements of the Lie algebrag associated with the Lie groupG.

Prior to formulating the next theorem we recall the definition of an anti-action of a Lie
group on itself and the definition of an orbit. By an anti-action of a Lie groupG on itself we
mean the mapρ : G × G → G, (Q,L0) 7→ ρQ(L0) which fulfils the following properties:

∀Q1,Q2, L0 ∈ G ρQ1·Q2(L0) = ρQ2 ◦ ρQ1(L0)

∀Q,L0 ∈ G ρQ−1(L0) = ρ−1
Q (L0)

(2.14)

where◦ denotes the superposition of maps. Another term for an anti-action ofG is the right
action ofG [4]. If we fix an elementQ from G, then we denote the anti-action ofG on itself
by means of a mapρQ : G → G. An orbitOL0 of an elementL0 is the set

OL0 = {ρQ(L0)|Q ∈ G}. (2.15)

We can now formulate the following theorem.

Theorem 3. Integral curves of (2.4) belong to orbits of the following anti-action of the Lie
groupG on itself:

∀Q,L0 ∈ G ρQ(L0) := Q−1L0κ(Q
−1). (2.16)

Proof. The above statement means, that for anyt > t0 there exists a suitable matrixQ(t) ∈ G,
such that

L(t) = Q(t)−1L0κ(Q(t)
−1). (2.17)

Now, we need to associate any elementM from g with the elementQ from the groupG. Any
elementM ∈ g determines the corresponding elementQ ∈ G by means of the standard relation
(the well known Lie theorem):

Q̇ = QM Q(t0) = 1I. (2.18)
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Writing (1.4) we have indicated that an explicit dependence of the matrixM on t and the
dependence onL are admissible. These dependences do not destroy the relation between the
Lie groupG and the Lie algebrag if M(t) is a continuous function oft and ifM(t) remains all
the time ing. This important generalization of the Lie theorem is due to Watkins [16]. Now,
if we calculate the time derivative ofL (2.17) with respect tot using (2.18) we obtain (2.4).�

In the framework of Lie group structures, we can see the geometric meaning of first
integrals described by theorem 1, if we introduce the notion ofG-invariant function. A function
is G-invariant with respect to the anti-actionρ of G on itself iff

∀Q,L ∈ G f (ρQ(L)) = f (L). (2.19)

We denote byI (G) a set ofG-invariant functions.

Theorem 4. First integrals described by theorem 1 areG-invariant functions with respect to
the anti-action (2.16) ofG on itself.

Proof. Using (2.17) we obtain

Lκ(L−1) = Q−1L0κ(L
−1
0 )Q. (2.20)

It is obvious from (2.20) that the expressionLκ−1(L) changes in time by means of a similarity
transformation and its eigenvalues do not change. �

3. The construction of Hamiltonian equations containing an arbitrary
anti-automorphism and a connection with factorization problem

In this section, we describe a method for constructing Hamiltonian equations of the form
(2.4) and a connection of this type of equations with the factorization problem of the Lie
algebragl(n,R) and of the associated Lie groupgl(n,R). In the whole section we assume
thatG = GL(n,R). The presented method of constructing Hamiltonian-type equations may
be used if in the Lie algebrag there exists a classicalR matrix [11,12] with special properties.

The construction of the Hamiltonian equations consists of giving the definition of a Poisson
bracket and specifying a generating function,ϕ ∈ C∞(G), which is interpreted as Hamiltonian.

First we define the Poisson bracket. The Lie algebra,g, of matrices carries the natural and
in general degenerate indefinite scalar product(·, ·) : g× g→ R:

∀M1,M2 ∈ g (M1,M2) := Tr(M1M2) (3.1)

which is invariant with respect to the adjoint representation of the Lie algebrag, i.e.

∀M1,M2 ∈ g (M1, [M2,M3]) = −([M2,M1],M3). (3.2)

Using the product (3.1), we define for arbitraryψ ∈ C∞(G) the left- and the right-gradient
Dψ(L),D′ψ(L) ∈ g [12] by the relations

(Dψ(L),M) = d

dt

∣∣∣∣
t=0

ψ(etML) (D′ψ(L),M) = d

dt

∣∣∣∣
t=0

ψ(LetM) (3.3)

whereL ∈ G andM ∈ g. The above definitions are connected with the notion of the gradient
of an arbitrary matrix functionψ ∈ C∞(G), gradψ(L) ∈ g associated with the product (3.1),
which was introduced as

∀M ∈ g (gradψ(L),M) = dψ(L)M (3.4)
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where the right-hand side represents the value of the differential of the function on a tangent
vector. The relations between left- Dψ(L) and right-D′ψ(L) and the gradient gradψ(L) are
the following:

Dψ(L) = Lgradψ(L) D′ψ(L) = gradψ(L)L. (3.5)

We assume that a classicalRmatrix fulfils the ‘unitarity’ condition (skew-symmetry condition):

∀M1,M2 ∈ g (M1, R(M2)) = −(R(M1),M2). (3.6)

We can now define a bracket{·, ·}S [13] for ψ1, ψ2 ∈ C∞(G):
{ψ1(L), ψ2(L)}S := 1

2[(R(Dψ1(L)),Dψ2(L))− (R(D′ψ1(L)),D
′ψ2(L))]. (3.7)

This bracket is known as the Sklyanin bracket. Its properties are described by the following
theorem.

Theorem 5. (E.g. Semenov-Tian-Shansky [13].) If the classical R matrix fulfils the ‘unitarity
condition’, then the Sklyanin bracket is a Poisson bracket.

The proof of linearity and antisymmetry is trivial and the Jacobi identity may be checked
analogously as in [13] or as in [7].

We can now write the Hamiltonian equation for any functionψ ∈ C∞(G), generated by
another arbitrary functionϕ ∈ C∞(G):

dψ(L)

dt
= {ϕ(L), ψ(L)}S. (3.8)

The explicit form of this equation, obtained by means of the Sklyanin bracket and of the
indefinite product (3.1), is the following:

(gradψ(L), L̇) = 1
2(R(Dϕ(L)),Dψ(L))− 1

2(R(D
′ϕ(L)),D′ψ(L)). (3.9)

Then, using the explicit form of(·, ·) and the properties of trace we can rewrite (3.9) as

Tr(gradψ(L)L̇) = 1
2 Tr(gradψ(L)R(Lgradϕ(L))L)− 1

2 Tr(gradψ(L)LR(gradϕ(L)L)).

(3.10)

From this equation we obtain the evolution equation forL:

L̇ = 1
2R(Lgradϕ(L))L− 1

2LR(gradϕ(L)L) (3.11)

for an arbitrary functionϕ ∈ C∞(G). There exists a set of functions and a subset of anti-
automorphisms, for which equation (3.11) has the form

L̇ = −(Lκ(M) +ML) L(t0) = L0. (3.12)

Theorem 6. Assume that the generating functionϕ belongs to the setI (G) of G-invariants of
the anti-action (2.16) and an anti-automorphismκ is orthogonal with respect to the product
(3.1)

∀M1,M2 ∈ g (κ(M1),M2) = (M1, κ(M2)) (3.13)

and fulfils the commutation relation with the ‘unitary’ classicalR matrix. Then the evolution
equation (3.11) transforms to the form (3.12) with the matrixM of the form

M = − 1
2R(Lgradϕ(L)). (3.14)

In addition, all functions fromI (G) are in involution with respect to the Sklyanin bracket.
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As elements fromI (G) we can take, for example, the eigenvalues of the matrixLκ(L−1).

Proof. In our case the condition ofG-invariance of a functionϕ(L) with respect to the anti-
action (2.16) reads

∀Q,L ∈ G ϕ(Q−1Lκ(Q−1)) = ϕ(L). (3.15)

The infinitesimal version of theG-invariance condition is the following

(gradϕ(L),ML +Lκ(M)) = 0. (3.16)

Using the explicit form of the product and properties of the trace we can rewrite this condition
in the equivalent form

∀L ∈ G ∀M ∈ g Tr(gradϕ(L)ML) = −Tr(gradϕ(L)Lκ(M)). (3.17)

Now, let us look at (3.10). The second term on the right-hand side can be transformed using
the infinitesimal version of theG-invariance condition for

M = κ(R(gradψ(L)L)) (3.18)

as well as the assumed properties of the classicalR matrix and of the anti-automorphismκ:

−Tr(gradψ(L)LR(gradϕ(L)L)) = Tr(R(gradψ(L)L)gradϕ(L)L)

= Tr(LR(gradψ(L)L)gradϕ(L)) = −Tr(κ(R(gradψ(L)L))Lgradϕ(L))

= − Tr(R(gradψ(L)L)κ(Lgradϕ(L))) = Tr(gradψ(L)Lκ(R(Lgradϕ(L)))).

(3.19)

After these manipulations we obtain

L̇ = 1
2R(Lgradϕ(L))L + 1

2Lκ(R(Lgradϕ(L))). (3.20)

If we introduce the matrixM, defined by (3.14), then this equation transforms into

L̇ = −Lκ(M)−ML M = − 1
2R(Lgradϕ(L)). (3.21)

The second part of the theorem is immediately obtained forϕi, ϕj ∈ I (G) from the infinitesimal
version ofG-invariance conditions for both of them. First, we use theG-invariance condition
for ϕi and put

M = 1
2κ(R(gradϕj (L)L)). (3.22)

Next, we take theG-invariance condition forϕj and put

M = 1
2κ(R(Lgradϕi(L))). (3.23)

The sketch of explicit calculations is the following:

{ϕi, ϕj }S = 1
2 Tr(gradϕj (L)R(Lgradϕi(L))L)− 1

2 Tr(gradϕj (L)LR(gradϕi(L)L))

= 1
2 Tr(gradϕj (L)R(Lgradϕi(L))L) + 1

2 Tr(gradϕj (L)Lκ(R(Lgradϕi(L))))=0.

(3.24)

�

Equation (3.21) has a connection with the factorization problem of the Lie algebrag and
of the Lie groupG [11–13].

We denote bygR a Lie algebra with the underlying vector space the same as that ofg but
with another Lie bracket [·, ·]R : g× g→ g:

[M1,M2]R = 1
2([R(M1),M2] + [M1, R(M2)]. (3.25)
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We now define, using the classicalR matrix, two Lie algebra homomorphismsR± : gR → g,

R+ := 1
2(R + 1I) R− := 1

2(R − 1I). (3.26)

Note thatR+ − R− = 1I and an arbitrary elementM ∈ g admits a unique decomposition:

M = M+ −M− where M+ := R+(M),M− := R−(M). (3.27)

In most cases classicalR matrices are constructed as follows. Assume that there is a
vector space decomposition ofg into a direct sum⊕ of two subalgebrasg+ andg−,

g = g+ ⊕ g−. (3.28)

Let P+ andP− be projectors ontog+ and g−, respectively, parallel to the complementary
subalgebra. Using the projectors we can construct a classicalR matrix as

R := P+ − P−. (3.29)

It is obvious that

R+ = P+ R− = −P− (3.30)

and we can call (3.27) a factorization of the Lie algebrag.
Using this decomposition and the property ofG-invariance of the functionϕ(L) it is

convenient to rewrite (3.21) in two equivalent forms:

L̇ = −Lκ(M+)−M+L L̇ = −Lκ(M−)−M−L (3.31)

whereM+,M− are defined as

M+ := −R+(Lgradϕ(L)) M− := −R−(Lgradϕ(L)). (3.32)

We now turn to the corresponding factorization of the Lie groupG. LetG andGR be local
Lie groups corresponding tog andgR, respectively. There are homomorphismsR± : GR → G
which correspond to the Lie algebra homomorphismsR±. We use the same letters denoting the
Lie algebra and the Lie group homomorphisms. EachQ ∈ G admits a unique decomposition:

Q(t) = Q+(t)Q
−1
− (t) where Q+(t) := R+(Q(t)) Q−(t) := R−(Q(t)). (3.33)

We describe the relation of equations (3.31) with the factorization problem in the following
theorem.

Theorem 7. LetQ+(t) andQ−(t) be solutions of the following differental equations:

Q̇+(t) = Q+(t)M+(t) Q+(t0) = 1
Q̇−(t) = Q−(t)M−(t) Q−(t0) = 1

(3.34)

whereM+,M− have forms (3.32) with theG-invariant functionϕk(L) of the form

ϕk(L) = Tr(Lκ(L−1))k k = 1, 2, . . . , (3.35)

whereκ is any orthogonal anti-automorphism commuting with the ‘unitary’ classicalRmatrix.
Then the integral curves of (3.21) are given by

L(t) = Q−1
+ L0κ(Q

−1
+ ) = Q−1

− L0κ(Q
−1
− ) (3.36)

andQ+(t) andQ−(t) are solutions of the factorization problem (3.33) with the left-hand side
given by

Q(t) = exp{−tL0gradϕk(L0)} k = 1, 2, . . . . (3.37)
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Proof. If we differentiate (3.36) with respect tot , then we obtain equations (3.31), which are
equivalent to (3.21). In order to prove the second part of the theorem we only need evolution
equations forQ+(t),Q−(t) (3.34), the equation of the decomposition of the Lie algebra (3.27),
and the law of evolution for gradϕk(L(t)) for ϕk(L) of the form (3.35). We now find this law
of evolution. Using the explicit form ofG-invariant functions (3.35) we can calculate

grad(Tr(Lκ(L−1))k) = k[(κ(L−1)L)k−1κ(L−1)− (L−1κ(L))kL−1] k = 1, 2, . . . .

(3.38)

Now, if we take (3.36) and the above relation we obtain the law of evolution for any function
ϕk(L) from the set (3.35) in the following form:

gradϕk(L(t)) = κ(Q+(t))gradϕk(L0)Q+(t). (3.39)

Finally, we present the second part of the proof:

dQ

dt
= Q̇+Q

−1
− +Q+(Q

−1
− )̇ = Q+(M+ −M−)Q−1

− = Q+(−Lgradϕk(L))Q
−1
+ Q+Q

−1
−

= −Q+[Q−1
+ L0κ(Q

−1
+ )][κ(Q+)gradϕk(L0)Q+]Q−1

+ Q+Q
−1
−

= − L0gradϕk(L0)Q. (3.40)

Using the initial conditionQ(t0) = 1 we obtain (3.37). �

4. Evolution equations associated with transposition of matrices

In this section, we consider matrix equations associated with a special choice of an anti-
automorphism—the transposition of matrices:

L̇ = −LMT −ML L(t0) = L0. (4.1)

In general, we can choose the state space as the set of all nonsingular matrices.
Eigenvalues of the matrixL(L−1)T form the set of first integrals. We observe that in cases

when the matrixL is symmetric or antisymmetric for anyt > t0, all these first integrals equal
1 or−1, respectively. We deal with one of these two cases if we take the initial conditionL0

to be any symmetric or, respectively, antisymmetric matrix.
We note that ifM is an antisymmetric matrix then (4.1) transforms into the Lax equation

˙̃
L = L̃M̃ − M̃L̃ L̃(t0) = L̃0. (4.2)

However, in general the relation between the existence of the representation (4.1) and the Lax
representation (4.2) is more complicated. A few simple examples, below, show that there
are dynamical systems for which it is easy to construct the representation (4.1) but it is not
clear how to construct the Lax representation with matricesL̃ andM̃ of the same dimension
and structure asL andM in (4.1). We cannot exclude neither the existence nor the lack of
the representation of the form (4.2) because, to our best knowledge, no theorem on global
Lax representations for arbitrary dynamical systems exists. We only want to point out that
certain dynamical systems are naturally representable in the form (4.1) with simple matrices
L andM, whose elements are linear combinations of the variables of the dynamical system in
question. For examples representable in the form (4.1) we were not able to find any nontrivial
Lax representation with̃L andM̃ with the same dimension and structure asL andM in (4.1).
The MAPLE system proved useful in finding the representations.

We begin with the following dynamical system

ȧ = 2a(a − b)
ḃ = 2b(a − b). (4.3)
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This system has a simple representation with the anti-automorphism of the form (4.1) if we
take matricesL andM to be

L =
(

0 a

b 0

)
M =

(
b − a 0

0 b − a
)
. (4.4)

From this representation we can obtain the first integralI

I = a

b
. (4.5)

We note thatI has the form of a quotient of polynomials of variablesa andb. This quotient
form of first integrals is characteristic for the representation (4.1) and is different from the
polynomial form of first integrals obtained by means of the Lax representation. If we now
look for the representation (4.2) of (4.3) in the set of two-dimensional real matrices with
elements which are linear combinations of the variablesa andb, we obtain many families of
solutions. But most of these representations reconstruct only one equation of the system (4.3).
For example, the representation withL̃ andM̃ of the form

L̃ =
(

0 0
a31b 0

)
M̃ =

(−(c41 + 2)b + (2− c42)a 0
−c31b − c32a −c41b − c42a

)
(4.6)

wherea31, c31, c32, c41, c42 are real parameters, only reproduces the evolution equation forb.
In all representations which generate both equations in (4.3), e.g.

L̃ =
(−2 a22a32

c32a22−α b + 1
2(α − c32a22)a −a22b + a22a

−a32b + a32a 2 a22a32
c32a22−α b + 1

2(c32a22− α)a
)

M̃ =
(
a22c32(2−c41)+α(c41+2)

c32a22−α b + c32(c32a22−α)+a32(2−c42)

a32
a

a22(c
2
32a22−c32α+4a32)

a32(c32a22−α) b − α
a32
a

c32b − c32a −c41b − c42a

) (4.7)

wherea22, a32, c32, c41, c42 are real parameters andα is a solution of the following quadratic
equation

x2 − 2a22c32x + c2
32a

2
22 + 4a22a32 = 0 (4.8)

both eigenvalues of the matrix̃L are equal to zero.
A similar situation occurs for the next dynamical system

ȧ = a(a + b − 2c)
ḃ = b(a + b − 2c)

ċ = 2c(b − c).
(4.9)

This system has a natural representation with the transposition (4.1),

L =
(

0 a

b c

)
M =

(
c − a 0

0 c − b
)
. (4.10)

Using MAPLE for the Lax representation of (4.9) in the set of two-dimensional matrices with
linear combinations of elementsa, b andc, we do not get any pair of matrices̃L andM̃ that
reconstruct all of the equations (4.9). Now, if we pass to the set of three-dimensional matrices
with elements of the same linear structure, then we obtain a few representations that generate
the whole system. But in all these cases matricesL̃ have only one degenerate eigenvalue equal
to zero.

Next, we take a dynamical system which has the well known Lax representation. It is a
two-dimensional Toda lattice

ḃ1 = −2a2
1

ḃ2 = 2a2
1

ȧ1 = a1(b1− b2).

(4.11)
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Its Lax representation is

L̃ =
(
b1 a1

a1 b2

)
M̃ =

(
0 a1

−a1 0

)
. (4.12)

This system is representable in the form of the matrix evolution equation (4.1) with the
transposition as well, e.g. if we choose

L =
(

b1− 3
2a1 2b1− b2 + 2a1

b1− 2b2 + 2a1 4b2 + 6a1

)
M =

(
0 a1

2−2a1 0

)
. (4.13)

For this choiceL(LT )−1 has two different eigenvalues.
The last example concerns the following dynamical system

ȧ1 = 2a2
1 + b1(2b2 + b1) + b2

2

ȧ2 = 2a2
2 + b2(2b1 + b2) + b2

1

ḃ1 = (a1 + a2)(2b1 + b2)

ḃ2 = (a1 + a2)(2b2 + b1)

(4.14)

which is representable in the form (4.1), e.g. if we takeL andM to be

L =
(
a1 b1

b2 a2

)
M =

( −a1 −b1− b2

−b1− b2 −a2

)
. (4.15)

Using MAPLE we are not able to find the Lax representation in the set of two-dimensional
matrices with linear combinations of elementsa1, a2, b1, b2 as, generating the whole system
(4.14).

These examples show that there are dynamical systems for which representations with the
transposition (4.1) are more natural and easier to find.

The equation

L̇ = −LMT −ML L(t0) = L0 (4.16)

has one more interesting property: it is related to special classes of tensor invariants of any
autonomous dynamical system

ẋi = F i(x1, . . . , xm) i = 1, . . . , m (4.17)

on anm-dimensional manifold with coordinates(x1, . . . , xm). A tensor fieldT is a time-
independent tensor invariant [2] of the dynamical system (4.17) iff

LF T = 0 (4.18)

whereLF denotes the Lie derivative with respect to the vector fieldF . For our needs we
only consider in detail the(0, 2)- and(2, 0)-type time-independent tensor invariants. Now, we
write two formulae of the Lie derivativeLF of (2, 0)- and(0, 2)-type tensor fields2 and9,
respectively, along the vector fieldF(x):

(LF2)ij =
m∑
k=1

[
∂2ij

∂xk
F k −2ik ∂F

j

∂xk
−2kj ∂F

i

∂xk

]
(LF8)ij =

m∑
k=1

[
∂8ij

∂xk
F k +8ik

∂F k

∂xj
+8kj

∂F k

∂xi

]
.

(4.19)

It is obvious that if2 and8 are time-independent tensor invariants of the autonomous
dynamical system generated by the fieldF , then the above equations transform into

2̇ij =
m∑
k=1

[
2ik ∂F

j

∂xk
+
∂F i

∂xk
2kj

]
8̇ij =

m∑
k=1

[
−8ik

∂F k

∂xj
− ∂F

k

∂xi
8kj

]
.

(4.20)
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We introduce two matrices:

P ik := −∂F
i

∂xk
Rik := ∂F k

∂xi
. (4.21)

The symbolsP ik , R
i
k denote the elements in theith rows and thekth columns of the matrices

P andR, respectively. Now we can rewrite equations (4.20) as

2̇ = −2PT − P2 8̇ = −8RT − R8. (4.22)

We can then formulate the following theorem.

Theorem 8. Evolution equations for time-independent(0, 2)- and(2, 0)-type tensor invariants
of the autonomous dynamical system (4.17) have a matrix representation with the
transposition (4.16).

We can see a similarity to the Lax representation case, which is associated with the time-
independent(1, 1)-type tensor invariant [5,6].

This statement can be regarded as a proposal of the method for a systematic search for
a matrix representation of type (4.16) for the autonomous system (4.17). Namely, if we find
(2, 0)- or (0, 2)- type tensor field2 or 8, respectively, with vanishing Lie derivative along
integral curves of (4.17), then we can construct a matrix representation of the type (4.16). We
need only make the following substitutions:

(1) in the case of the existence of the(2, 0)-type time-independent tensor invariant2:

Lij := 2ij Mi
j := −∂F

i

∂xj
(4.23)

(2) and in the case of the existence of the (0,2)-type time-independent tensor invariant8:

Lij := 8ij Mi
j := ∂F j

∂xi
. (4.24)

In this manner, we transform the problem of looking for a matrix representation with the
transposition (4.16) of the dynamical system (4.17) into the problem of looking for certain
tensor invariants.
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